- The complete collection of symmetry operations (*not* symmetry elements) satisfies the requirements of a mathematical group.
 - ✓ The symmetry operations are the *elements* of a group.
 - ✓ The total number of symmetry operations comprising the group is the *order of the group*, *h*.
 - The group formed by the operations of CBr_2Cl_2 is named C_{2v} .

C_{2v}	Ε	C_2	σ_{v}	σ_v '
Е	Е	C_2	σ_{v}	σ_v '
C_2	C_2	Ε	σ_{v}'	σ_{v}
σ_{v}	σ_{v}	σ_v '	Ε	C_2
$\sigma_{v}{}'$	σ_v '	σ_{v}	C_2	Ε

- ① **Closure** If *A* and *B* are in the group *G*, and *AB* = *X*, then *X* is also in *G*.
 - ✓ All groups have a self-contained multiplication table, whose products are members of the group.
- ② **Identity** In any group *G*, there is an element *E*, such that EX = XE = X
 - ✓ The symmetry operation of identity is this group element.
- ③ **Associativity** If *A*, *B*, *C*, and *X* are in *G*, then C(BA) = X = (CB)A
 - ✓ But commutation is not general (e.g., $S_4\sigma_v \neq \sigma_v S_4$).
 - ✓ Groups in which all elements *do* commute are called **Abelian** (e.g., C_{2v}).
- ④ **Reciprocality** In any group *G*, every element *A* has an inverse A^{-1} , such that $AA^{-1} = A^{-1}A = E$.
 - ✓ An element may be its own inverse (e.g., all operations of C_{2v}).

Subgroups

- Within all groups (except the trivial asymmetric group, $C_1 = \{E\}$), there are smaller collections of elements, called **subgroups**, which also obey the criteria for a group.
 - The order of any subgroup, *g*, relative to the order of its parent group, *h*, must be

$$h/g = n$$
 $n = 1, 2, ...$

- ✓ The order of a subgroup, *g*, must be an integer divisor of the order of its parent group, *h*.
- ✓ More than one subgroup with a particular order *g* may exist.
- ✓ Not every allowed value of *g* is always represented among a group's subgroups.

Subgroups of C_{2v} (h = 4)
Possible subgroup orders g = 1, 2Group LabelOperations (Group Elements)g C_1 E1 C_2 E, C_2 2 C_s E, σ_v or E, σ_v' 2